Bambu Filament

Technical Data Sheet V2.0

PLA Basic

- Basic Info

PLA is the most common material in 3D printing as it's easy to print and inexpensive. Meanwhile, its stiffness and strength can meet most printing needs. It is worth mentioning that it can biodegrade in some artificial composting conditions. Bambu PLA Basic is designed for high-speed printing. Compared to general PLA, it can easily achieve printing speeds up to $250-300 \mathrm{~mm} / \mathrm{s}$ and has excellent toughness and Z-layer strength.

- Specifications

Subjects	Data
Diameter	1.75 mm
Net Filament Weight	1 kg
Spool Material	ABS (Temperature resistance $70^{\circ} \mathrm{C}$)
Spool Size	Diameter: 200 mm ; Height: 67 mm

- Recommended Printing Settings

Subjects	Data
Drying Settings before Printing	$55^{\circ} \mathrm{C}, 8$ hours
Printing and Storage Humidity	$<20 \%$ RH (Sealed with desiccant)
Nozzle Temperature	$190-230^{\circ} \mathrm{C}$
Bed Type	Cool Plate, High Temperature Plate or Textured PEI Plate
Bed Surface Preparation	PVP Glue
Bed Temperature	$35-45^{\circ} \mathrm{C}$
Cooling Fan	100%
Printing Speed	$<300 \mathrm{~mm} / \mathrm{s}$
Retraction Length	$0.6-1.0 \mathrm{~mm}$
Retraction Speed	$20-40 \mathrm{~mm} / \mathrm{s}$
Chamber Temperature	$25-45^{\circ} \mathrm{C}$
Max Overhang Angle	55°

Subjects	Data
Max Bridging Length	30 mm
Support Material	Support for PLA

- Properties

Bambu Lab has tested the differing aspects in the performance of PLA Basic material, including physical, mechanical, and chemical properties. Typical values are listed as followed:

Physical Properties		
Subjects	Testing Methods	Data
Density	ISO 1183	$1.24 \mathrm{~g} / \mathrm{cm}^{3}$
Melt Index	$210^{\circ} \mathrm{C}, 2.16 \mathrm{~kg}$	$42.4 \pm 3.5 \mathrm{~g} / 10 \mathrm{~min}$
Melting Temperature	$\mathrm{DSC}, 10^{\circ} \mathrm{C} / \mathrm{min}$	$160^{\circ} \mathrm{C}$
Glass Transition Temperature	$\mathrm{DSC}, 10^{\circ} \mathrm{C} / \mathrm{min}$	$60^{\circ} \mathrm{C}$
Crystallization Temperature	$\mathrm{DSC}, 10^{\circ} \mathrm{C} / \mathrm{min}$	N / A
Vicar Softening Temperature	ISO $306, \mathrm{~GB} / \mathrm{T} 1633$	$57^{\circ} \mathrm{C}$
Heat Deflection Temperature	ISO 751.8 MPa	$54^{\circ} \mathrm{C}$
Heat Deflection Temperature	ISO 750.45 MPa	$57^{\circ} \mathrm{C}$
Saturated Water Absorption Rate	$25^{\circ} \mathrm{C}, 55 \% \mathrm{RH}$	0.43%

Mechanical Properties (Dry state)

Subjects	Testing Methods	Data
Young's Modulus (X-Y)	ISO 527, GB/T 1040	$2680 \pm 130 \mathrm{MPa}$
Young's Modulus (Z)	ISO 527, GB/T 1040	$2160 \pm 90 \mathrm{MPa}$
Tensile Strength (X-Y)	ISO 527, GB/T 1040	$39 \pm 2 \mathrm{MPa}$
Tensile Strength (Z)	ISO 527, GB/T 1040	$35 \pm 3 \mathrm{MPa}$
Breaking Elongation Rate (X-Y)	ISO 527, GB/T 1040	$12.2 \pm 0.4 \%$
Breaking Elongation Rate (Z)	ISO 527, GB/T 1040	$7.5 \pm 0.3 \%$
Bending Modulus (X-Y)	ISO 178, GB/T 9341	$2750 \pm 60 \mathrm{MPa}$
Bending Modulus (Z)	ISO 178, GB/T 9341	$2370 \pm 50 \mathrm{MPa}$
Bending Strength (X-Y)	ISO 178, GB/T 9341	$76 \pm 3 \mathrm{MPa}$
Bending Strength (Z)	ISO 178, GB/T 9341	$68 \pm 2 \mathrm{MPa}$
Impact Strength (X-Y)	ISO 179, GB/T 1043	$26.6 \pm 2.8 \mathrm{kJ/m}^{2} ;$$\quad$$7.9 \pm 1.2 \mathrm{~kJ} / \mathrm{m}^{2}$ $(\mathrm{notched})$
Impact Strength (Z)	ISO 179, GB/T 1043	$13.8 \pm 0.9 \mathrm{~kJ} / \mathrm{m}^{2}$

Other Physical and Chemical Properties	
Subjects	Data
Odor	Odorless
Composition	PLA
Skin Hazards	No hazard
Chemical Stability	Stable under normal storage and handling conditions
Solubility	Insoluble in water
Resistance to Acid	Not resistant
Resistance to Alkali	Not resistant
Resistance to Organic Solvent	Not resistant to some organic solvents
Resistance to Oil and Grease	Resistant to most kinds of oil and grease
Flammability	Flammable and self-extinguishing in the air
Combustion Products	Water, carbon oxides
Odor of Combustion Products	Odorless

- Specimen Test

Specimen Printing Conditions	
Subjects	Data
Nozzle Temperature	$220^{\circ} \mathrm{C}$
Bed Temperature	$35^{\circ} \mathrm{C}$
Printing Speed	$200 \mathrm{~mm} / \mathrm{s}$
Infill Density	100%
${ }^{*}$ All the specimens were annealed and dried at $55^{\circ} \mathrm{C}$ for 8 hours before testing.	

1. Tensile Testing

2. Bending Testing

3. Impact Testing

- Disclaimer

The performance values are tested by standard samples at Bambu Lab, and the values are for design reference and comparison only. Actual 3D printing model performance is related to many other factors, including printers, printing conditions, printing models, printing parameters, etc.

In the process of using Bambu Lab 3D printing filaments, users are responsible for the legality, safety, and performance indicators of printing. Bambu Lab is not responsible for the use of materials and scenarios and is not responsible for any damage that occurs in the process of using our filaments.

